Fluorophosphine Complexes of Ruthenium and Osmium. Part 4. ${ }^{1}$ Homobinuclear Trichloro-bridged Complexes of Ruthenium(iI) \dagger

By Robert A. Head and John F. Nixon,* School of Molecular Sciences, University of Sussex, Brighton BN1 90J

Abstract

The reaction of $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ with different mol ratios of PF_{3} proceeds via the trichloro-bridged binuclear complexes $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}\left(\mathrm{~F}_{3} \mathrm{P}\right) \mathrm{RuCl}{ }_{3} \mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}\left(\mathrm{~F}_{3} \mathrm{P}\right) \mathrm{RuCl}{ }_{3} \mathrm{RuCl}\left(\mathrm{PF}_{3}\right)\left(\mathrm{PPh}_{3}\right)\right]$ to form the stable mononuclear complex cis-[RuCl $\left.2\left(\mathrm{PF}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$. Similar reactions occur with $\mathrm{PF}_{2}\left(\mathrm{NMe}_{2}\right)$. The binuclear complexes have been isolated and characterised by ${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ n.m.r. spectroscopy. The cis- $\left[\mathrm{RuCl}_{2} \mathrm{~L}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ complexes $\left[\mathrm{L}=\mathrm{PF}_{3}\right.$ or $\left.\mathrm{PF}_{2}\left(\mathrm{NMe}_{2}\right)\right]$ react with $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ to form the trichloro-bridged dimers $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}\left(\mathrm{~F}_{3} \mathrm{P}\right) \mathrm{RuCl} \mathrm{RuCl}_{3} \mathrm{Ru}-\right.$ $\left.\left(\mathrm{PF}_{3}\right)\left(\mathrm{PPh}_{3}\right)\right]$ and $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)\left\{\left(\mathrm{Me}_{2} \mathrm{~N}\right) \mathrm{F}_{2} \mathrm{P}\right\}_{2} \mathrm{RuCl}_{3} \mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ respectively. Syntheses of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}(\mathrm{OC}) \mathrm{RuCl}_{3}-\right.$ $\left.\mathrm{RuCl}\left(\mathrm{PF}_{3}\right)\left(\mathrm{PPh}_{3}\right)\right],\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}(\mathrm{OC}) \mathrm{RuCl}_{3} \mathrm{RuCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$, and $c i s-\left[\mathrm{RuCl}_{2}(\mathrm{CO})\left(\mathrm{PF}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ are also reported. Possible mechanisms for the formation of the dimeric complexes are discussed and some reactions are reported.

As mentioned briefly in the previous paper, ${ }^{1}$ attempts to synthesise monomeric complexes of $\mathrm{Ru}^{I I}$ of the type $\left[\mathrm{RuCl}_{2} \mathrm{~L}\left(\mathrm{PPh}_{3}\right)_{3}\right] \quad\left[\mathrm{L}=\mathrm{PF}_{3}\right.$ or $\left.\mathrm{PF}_{2}\left(\mathrm{NMe}_{2}\right)\right]$ either by treatment of the appropriate dihydrido-complex cis$\left[\mathrm{RuH}_{2} \mathrm{~L}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ with hydrogen chloride or $\left[\mathrm{RuCl}_{2}-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{3}\right]$ with 1 equivalent of the appropriate fluorophosphine ligand led instead to the formation of the interesting dimeric trichloro-bridged complexes of formula $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{LRuCl}_{3} \mathrm{RuCl}(\mathrm{L})\left(\mathrm{PPh}_{3}\right)\right]\left[\mathrm{L}=\mathrm{PF}_{3}\right.$ or $\mathrm{PF}_{2^{-}}$ $\left.\left(\mathrm{NMe}_{2}\right)\right]$. The present paper is concerned with the synthesis of several structural types of binuclear ruthenium(II) trichloro-bridged complexes and a study of the mechanism involved in their formation. For a preliminary account see ref. 2.

Relatively few similar types of complex have been reported and their syntheses have involved several different routes, e.g. $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{3}\left(\mathrm{PR}_{3}\right)_{6}\right] \mathrm{Cl}\left(\mathrm{PR}_{3}=\mathrm{PMe}_{2} \mathrm{Ph}\right.$, $\mathrm{PEt}_{2} \mathrm{Ph}, \mathrm{PMePh}_{2}$, or $\left.\mathrm{PEtPh}_{2}\right)^{3}{ }^{3}\left[\mathrm{Ru}_{2} \mathrm{Cl}_{3}\left(\mathrm{AsEtPh}_{2}\right)_{6}\right] \mathrm{Cl},{ }_{4}^{4}$ $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{6}\left(\mathrm{PBu}_{3}\right)_{4}\right]$ and $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{5}\left(\mathrm{PBu}_{3}\right)_{4}\right]^{5,6} \quad\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}\left(\mathrm{~N}_{2}\right)-\right.$ $\left.\mathrm{RuCl}_{3} \mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}\right], 7 \quad\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}(\mathrm{SC}) \mathrm{RuCl}_{3} \mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}\right],{ }^{8}$ $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}(\mathrm{OC}) \mathrm{RuCl}_{3} \mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}\right], 9 \quad\left[\mathrm{Ru}_{2} \mathrm{Cl}_{4}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{5}\right]{ }^{10}$ $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{3}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{6}\right]\left[\mathrm{RuCl}_{3}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{3}\right],{ }^{11,12}\left[\mathrm{Ru}_{2} \mathrm{Cl}_{3}\left(\mathrm{SnCl}_{3}\right)-\right.$ $\left.(\mathrm{CO})_{5}\right],{ }^{13} \quad\left[\mathrm{Os}_{2} \mathrm{Cl}_{3}\left(\mathrm{PR}_{3}\right)_{6}\right] \mathrm{Cl}^{3,14,15} \quad\left[\mathrm{MO}_{2} \mathrm{Cl}_{3}(\mathrm{CO})_{4}{ }^{-}\right.$ $\left.\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{4}\right]^{n+},{ }^{16}$ and $\left[\mathrm{Ir}_{2}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{H}_{3}\right]^{+} .{ }^{17}$

RESULTS AND DISCUSSION

The product from the reaction of PF_{3} with $\left[\mathrm{RuCl}_{2}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{3}\right]$ changes as the mol ratio of the reactants is varied. The reaction of a $2: 1 \mathrm{~mol}$ ratio of $\mathrm{PF}_{3}:\left[\mathrm{RuCl}_{2}-\right.$
\dagger No reprints available.
${ }^{1}$ Part 3, R. A. Head and J. F. Nixon, preceding paper.
${ }^{2}$ R. A. Head and J. F. Nixon, J.C.S. Chem. Comm., $1975,135$.
${ }^{3}$ J. Chatt and R. G. Hayter, J. Chem. Soc., 1961, 896.
${ }^{4}$ E. G. Leelaman and G. K. N. Reddy, Inorg. Nuclear Chem. Letters, 1975, 5.
${ }^{5}$ J. K. Nicholson, Angew. Chem. Internat. Edn., 1967, 6, 204.
${ }^{6}$ G. Chioccola, J. J. Daly, and J. K. Nicholson, Angew. Chem. Internat. Edn., 1968, 7, 131.
${ }^{7}$ L. W. Gosser, W. H. Knoth, and W. G. Parshall, J. Amer. Chem. Soc., 1973, 95, 3436.
${ }^{8}$ A. J. F. Fraser and R. O. Gould, J.C.S. Dalton, 1974, 1139.
${ }^{-}$T. A. Stephenson and P. W. Armit, J. Organometallic Chem., 1974, 73, C33.
$\left.\left(\mathrm{PPh}_{3}\right)_{3}\right]$ proceeds via a series of colour changes in which the initial brown solution rapidly changes to purple, deep red, and yellow and subsequently affords colourless crystals of the monomeric complex cis- $\left\{\mathrm{RuCl}_{2}\left(\mathrm{PF}_{3}\right)_{2}-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]$. A $1: 1 \mathrm{~mol}$ ratio of reactants results in the formation of orange-yellow crystals of the binuclear complex $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}\left(\mathrm{~F}_{3} \mathrm{P}\right) \mathrm{RuCl}_{3} \mathrm{RuCl}\left(\mathrm{PF}_{3}\right)\left(\mathrm{PPh}_{3}\right)\right]$ (1), while a $1: 2 \mathrm{~mol}$ ratio gives the deep red $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}\left(\mathrm{~F}_{3} \mathrm{P}\right)\right.$ $\left.\mathrm{RuCl}_{3} \mathrm{RuCl}\left(\mathrm{PPl}_{3}\right)_{2}\right]$ (2). Attempts to isolate the purple intermediate were unsuccessful, and when mol ratios $>1: 2$ are used only a correspondingly lower yield of (2) is obtained. Attempts to prepare the (dimethylamino)difluorophosphine analogue of (2) were unsuccessful, the reaction of $\mathrm{PF}_{2}\left(\mathrm{NMe}_{2}\right)$ with a two-fold excess of $\left[\mathrm{RuCl}_{2^{-}}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{3}\right]$ affording $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)\left\{\left(\mathrm{Me}_{2} \mathrm{~N}\right) \mathrm{F}_{2} \mathrm{P}\right\} \mathrm{RuCl}_{3} \mathrm{RuCl}_{2} \mathrm{PF}_{2^{-}}\right.$ $\left.\left.\left(\mathrm{NMe}_{2}\right)\right\}\left(\mathrm{PPh}_{3}\right)\right]$ (3) and starting material. These binuclear complexes consist of two octahedra sharing a common face defined by the three bridging chlorides and structural assignments are based on detailed analysis of their ${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ n.m.r. spectra (see below).

The proton-decoupled ${ }^{31} \mathrm{P}$ n.m.r. spectrum of (2) is shown in Figure 1 and the chemical-shift and couplingconstant data are recorded in Table l. The low-field widely spaced quartet $[1 J(\mathrm{PF})]$, which is readily assigned to the resonance of the PF_{3} ligand, exhibits a further triplet pattern arising from a fortuitously overlapping doublet of doublets [$\left.{ }^{2} J\left(\mathrm{PRuP}^{\prime}\right)\right]$. The two high-field AB patterns are assigned to the resonances of two pairs of chemically inequivalent PPh_{3} groups indicating that
${ }_{10}^{10}$ R. H. Prince and K. A. Raspin, J. Inovg. Nuclear Chem., 1969, 31, 695.
${ }_{11}$ N. W. Alcock and K. A. Raspin, J. Chem. Soc. (A), 1968, 2108.
${ }_{12}$ K. A. Raspin, J. Chem. Soc. $(A), 1969,461$.
13 M. Elder and D. Hall, J. Chem. Soc. (A), 1970, 245.
14 J. Chatt, G. J. Leigh, D. M. P. Mingos, and R. J. Paske, J. Chem. Soc. $(A), 1968,2636$.
${ }^{15}$ J. Chatt, D. P. Melville, and R. L. Richards, J. Chem. Soc. (A), 1971, 1169.
${ }_{16}$ M. G. B. Drew and J. D. Wilkins, J.C.S. Dalton, 1975, 1984.
${ }^{17}$ C. White, A. J. Oliver, and P. M. Maitlis, J.C.S. Dalton, 1973, 1901.
(2) has the structure shown above in which no two PPh_{3} groups on Ru^{1} or Ru^{2} eclipse the same type of ligand. Each line of the highest-field AB pattern is further split

into a doublet due to coupling to the PF_{3} ligand $\left.{ }^{2} J\left(\mathrm{PRuP}^{\prime}\right)\right]$, which confirms that this resonance arises

Treatment of (2) with 1 equivalent of PF_{3} affords complex (1), which can also be prepared by other routes summarised in the Scheme. Complex (1) can exist as the isomers (a)-(c), and the ${ }^{31} \mathrm{P}$ and ${ }^{19} \mathrm{~F}$ n.m.r. spectra of (1) indicate that all three isomers are present in solution. Interestingly, their relative abundance remains similar, regardless of the preparative route. The ${ }^{19} \mathrm{~F}$ n.m.r. spectrum of (1) (Figure 2 and Table 3) exhibits two intense doublets $[1](\mathrm{PF})]$ assigned to the resonances of the PF_{3} groups of isomer (a). The higher-field doublet is unequivocally assigned to the resonance of the PF_{3} on Ru^{2} since each line exhibits a further small doublet splitting arising from coupling to the adjacent

Figure 1 Proton-decoupled ${ }^{31} \mathrm{P}$ n.m.r. spectrum of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}\left(\mathrm{~F}_{3} \mathrm{P}\right) \mathrm{RuCl}_{3} \mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}\right] . \quad \mathrm{X}=\mathrm{P}(\mathrm{OMe})_{3}$
from the PPh_{3} groups co-ordinated to Ru^{1}. The ${ }^{19} \mathrm{~F} \quad \mathrm{PPh}_{3}$. The low-field resonance does not exhibit the n.m.r. spectra show the expected doublet $\left[{ }^{1} J(\mathrm{PF})\right]$ expected triplet pattern arising from coupling to the

Table I
Phosphorus-31 n.m.r. chemical-shift and coupling-constant data ${ }^{a}$

Complex	Ru^{1}			Ru^{2}		
	$\overbrace{\delta(\mathrm{PF})^{b}}$	$\delta(\mathrm{PPh})^{b}$	${ }^{2} J\left(\mathrm{PRuP}^{\prime}\right)^{c}$	$\overparen{\delta(\mathrm{PF})^{b}}$	$\overbrace{\delta(\mathrm{PPh})^{b}}$	${ }^{2} J(\mathrm{PRuP})^{\text {c }}$
(1) $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}\left(\mathrm{~F}_{3} \mathrm{P}\right) \mathrm{Ru}^{1} \mathrm{Cl}_{3} \mathrm{Ru}^{2} \mathrm{Cl}\left(\mathrm{PF}_{3}\right)\left(\mathrm{PPh}_{3}\right)\right]^{d}$	16.0	99.1 96.7	$\begin{aligned} & 26.5 \\ & 58.6(\mathrm{PF}) \end{aligned}$	21.9	90.3	68.4
(2) $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}\left(\mathrm{~F}_{3} \mathrm{P}\right) \mathrm{Ru}^{1} \mathrm{Cl}_{3} \mathrm{Ru}^{2} \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	17.2	103.0	24.4		95.0	36.6
		97.2	56.2(PF)		93.0	
(3) $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}\left\{\left(\mathrm{Me}_{2} \mathrm{~N}\right) \mathrm{F}_{2} \mathrm{P}\right\} \mathrm{Ru}^{1} \mathrm{Cl}_{3} \mathrm{Ru}^{2} \mathrm{Cl}\left\{\mathrm{PF}_{2}\left(\mathrm{NMe}_{2}\right)\right\}\left(\mathrm{PPh}_{3}\right)\right]^{d}$	-20.1	$\begin{aligned} & 98.9 \\ & 98.9 \end{aligned}$	53.7(PF)	-20.3	86.5	65.9
(4) $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}(\mathrm{OC}) \mathrm{Ru}^{1} \mathrm{Cl}_{3} \mathrm{Ru}^{2} \mathrm{Cl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]^{d}$		100.3	28.1		118.2	
		98.2				
(5) $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}(\mathrm{OC}) \mathrm{Ru}^{1} \mathrm{Cl}_{3} \mathrm{Ru}^{2} \mathrm{Cl}\left(\mathrm{PF}_{3}\right)\left(\mathrm{PPh}_{3}\right)\right]^{e}$		100.1				
		96.7	24.4	22.2	89.6	70.8
		(102.2)	(24.4)	(21.6)	(92.5)	(70.8)
(6) $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)\left\{\left(\mathrm{Me}_{2} \mathrm{~N}\right) \mathrm{F}_{2} \mathrm{P}_{32} \mathrm{Ru}^{1} \mathrm{Cl}_{3} \mathrm{Ru}^{2} \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{d}\right.$	-20.0	(98.3) 102.8	45.2		92.1	
(8) $\left[\mathrm{RuCl}_{2}(\mathrm{CO})\left(\mathrm{PF}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$	14.2	125.4	39.6			
${ }{ }^{6}$ In $\mathrm{CH}_{2} \mathrm{Cl}_{2} .{ }^{\text {b }}$ P.p.m. relative to $\mathrm{P}(\mathrm{OMe}){ }_{3} .{ }^{c}$ In Hz .	Major	r. e	es for min	some	in pa	eses.

(Table 2). The stereochemical assignment of (2) is thus similar to the thiocarbonyl analogue $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}(\mathrm{SC})\right.$ $\left.\mathrm{RuCl}_{3} \mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ whose structure has been recently established by X-ray crystallographic studies. ${ }^{8}$
two PPh_{3} on $\mathrm{Ru}^{\mathbf{1}}$, although the lines are relatively broad. The remainder of the spectrum consists of three doublet patterns of relative intensity $1: 1: 2$. The high-field doublet $[1 J(\mathrm{PF})]$ of intensity 2 exhibits further coupling

Table 2
Fluorine-19 n.m.r. chemical-shift and coupling-constant data^{a}

to PPh_{3}, confirming that this resonance is that of the PF_{3} on Ru^{2} from both (lb) and (1c). The similarity
in chemical shift is a consequence of the PF_{3} co-ordinated to Ru^{2} eclipsing PPh_{3} on Ru^{1} in both isomers. In (lb)

(c)

(1c)
and (1c) the PF_{3} co-ordinated to Ru^{1} is eclipsed by PPh_{3} and chloride respectively resulting in two distinct resonances.
The chemical shift of these lines has enabled a $2\left[\mathrm{RuCl}_{2}\left(\mathrm{PPH}_{3}\right)_{3}\right]$

Purple intermediate

(2) deep red

(1) yellow

$\left[\left\{\mathrm{RuCl}_{2}\left(\mathrm{OCMe}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right\}_{2}\right]$

$$
\text { cis }-\left[\mathrm{RuCl}_{2}\left(\mathrm{PF}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]
$$

colourless

Scheme (i) Reflux in $\mathrm{Me}_{2} \mathrm{CO}$; (ii) thermal decomposition
tentative assignment of each isomer to be made since the chemical-shift difference between the lowest-field pattern and the resonance of PF_{3} on Ru^{1} of isomer (la)

Figure 2 Fluorine-19 n.m.r. spectrum of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}\left(\mathrm{~F}_{3} \mathrm{P}\right) \mathrm{RuCl}_{3} \mathrm{RuCl}\left(\mathrm{PF}_{3}\right)\left(\mathrm{PPh}_{3}\right)\right]$
is identical to that between the two resonances observed for the PF_{3} on Ru^{2}. The latter shift is the result of the eclipsing atoms changing from PF_{3} to PPh_{3} and the lowest-field pattern is therefore assigned to the resonance
further split into a doublet by coupling to PF_{3} $\left.{ }^{2} J\left(\mathrm{PRuP}^{\prime}\right)\right]$. The unusual relative intensity of the lines in the latter resonance arise because isomers (lb) and (lc) exhibit similar overlapping patterns at slightly higher-field chemical shifts than (la). The expected two widely spaced low-field quartets $\left[{ }^{1} J(\mathrm{PF})\right]$ are assigned to the resonances of the PF_{3} ligands and the higher-field quartet exhibits a further $1: 1$ doublet splitting $\left[{ }^{2} J\left(\mathrm{PRuP}^{\prime}\right)\right]$ which unambiguously identifies it as arising from the PF_{3} on Ru^{2}, while the PF_{3} on Ru^{1} is identified by the appearance of a further triplet fine structure $\left.{ }^{2} J\left(\mathrm{PRuP}^{\prime}\right)\right]$.
Complex (3), which is best prepared either by treatment of $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ or $\left[\left\{\mathrm{RuCl}_{2}\left(\mathrm{OCMe}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right\}_{2}\right]$ with 1 equivalent of $\mathrm{PF}_{2}\left(\mathrm{NMe}_{2}\right)$, or by decomposition of $\left[\mathrm{RuCl}_{2}(\mathrm{dmf})\left\{\mathrm{PF}_{2}\left(\mathrm{NMe}_{2}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \quad(\mathrm{dmf}=$ dimethylformamide), also exists in all three possible isomeric forms. The ${ }^{19} \mathrm{~F}$ n.m.r. spectrum (Figure 4) exhibits four major, widely spaced, doublet patterns $\left[{ }^{1} J(\mathrm{PF})\right]$, each line appearing as a further doublet $\left[{ }^{2} J\left(\mathrm{FPF}^{\prime}\right)\right]$ indicating that the fluorine atoms on each $\mathrm{PF}_{2}\left(\mathrm{NMe}_{2}\right)$ ligand are anisochronic resulting from the presence of an asymmetric $R u^{1}$ centre. Weaker lines are assigned to the presence of the other two isomers.
The new binuclear carbonyl complex $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}(\mathrm{OC})\right.$ $\left.\mathrm{RuCl}_{3} \mathrm{RuCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$ (4) is made by treating cis$\left[\mathrm{RuH}_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right]$ with gaseous hydrogen chloride and

Figure 3 Proton-decoupled ${ }^{31} \mathrm{P}$ n.m.r. spectrum of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}\left(\mathrm{~F}_{3} \mathrm{P}\right) \mathrm{RuCl}_{3} R u C l\left(\mathrm{PF}_{3}\right)\left(\mathrm{PPh}_{3}\right)\right] . \quad \mathrm{X}=\mathrm{P}(\mathrm{OMe})_{3}$, width 10000 Hz
of the PF_{3} on Ru^{1} in isomer (lb), where the eclipsing ligand is PPh_{3}. The remaining lines are assigned to the PF_{3} ligand co-ordinated to Ru^{1} in isomer (1c). The isomers of (l) which have relative abundances of 74 (a), 15.5 (b), and 10.5% (c) respectively are not interconverted even on heating to $70^{\circ} \mathrm{C}$.

The proton-decoupled ${ }^{31} \mathrm{P}$ n.m.r. spectrum of (1) shown in Figure 3 confirms the presence of all three isomers. The more intense lines are the expected spectrum of isomer (la). Two PPh_{3} resonances appear at high field and are assigned to the ligands on Ru^{2} and Ru^{1} respectively. The former resonance appears as a doublet from coupling to $\mathrm{PF}_{3}\left[{ }^{2} J\left(\mathrm{PRuP}^{\prime}\right)\right]$, while the two PPh_{3} groups on Ru^{1} are chemically inequivalent and exhibit an $A B$ pattern of lines, each line being
its ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum indicates that two isomers are present in the ratio $3: 1$ (Table 1). The yellow binuclear complex $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}(\mathrm{OC}) \mathrm{RuCl}_{3} \mathrm{RuCl}\left(\mathrm{PF}_{3}\right)\left(\mathrm{PPh}_{3}\right)\right]$ (5) is readily obtained from the reaction of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}(\mathrm{OC})\right.$ $\left.\mathrm{RuCl}_{3} \mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with 1 equivalent of PF_{3}. The proton-decoupled ${ }^{31} \mathrm{P}$ n.m.r. (Table l) and ${ }^{19} \mathrm{~F}$ n.m.r. spectra (Table 2) indicate that both the expected isomers of (5) are present, but in different concentrations. It seems likely that the major isomer of (5) has a similar stereochemistry to (la).

An unexpected reaction occurs when $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ and $c i s-\left[\mathrm{RuCl}_{2}\left(\mathrm{PF}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ are heated under reflux in acetone solution, and a good yield of (I) is obtained (see Scheme). In the absence of $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right]$, the cis$\left[\mathrm{RuCl}_{2}\left(\mathrm{PF}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ is recovered unchanged. An un-
usual feature of the above reaction is the ready transfer of PF_{3} from one ruthenium atom to the other. Trifluorophosphine is not known to act as a bridging group as is carbon monoxide, and since the reaction is carried

Figure 4 Fluorine-19 n.m.r. spectrum of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}\left\{\left(\mathrm{Me}_{2} \mathrm{~N}\right) \mathrm{F}_{2} \mathrm{P}\right\} \mathrm{RuCl}_{3} \mathrm{RuCl}\left\{\mathrm{PF}_{2}\left(\mathrm{NMe}_{2}\right)\right\}\left(\mathrm{PPh}_{3}\right)\right]$
out in an open system any unco-ordinated PF_{3} would be expected to be readily lost on account of its volatility. Related ligand-transfer reactions are known involving involatile tertiary phosphines ${ }^{18-21}$ but these could

(6a)
proceed via ligand dissociation and subsequent attack at another metal centre. Alkyl transfer between platinum and palladium ${ }^{20}$ is assumed to involve an intermediate bridging ligand. No ligand transfer occurs during the formation of the deep red binuclear complex [($\left.\mathrm{Ph}_{3} \mathrm{P}\right)$ $\left\{\left(\mathrm{Me}_{2} \mathrm{~N}\right) \mathrm{F}_{2} \mathrm{P}_{2} \mathrm{RuCl}_{3} \mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (6) by heating an equimolar mixture of $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ and $\left[\mathrm{RuCl}_{2}-\right.$ $\left.\left\{\mathrm{PF}_{2}\left(\mathrm{NMe}_{2}\right)\right\}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, and this may reflect the ease of PPh_{3} dissociation from the latter.

Complex (6) can exist in the two possible isomeric structures shown above. The ${ }^{19} \mathrm{~F}$ n.m.r. spectrum of (6) shown in Figure $5(a)$ contains six pairs of lines $[1 J(\mathrm{PF})]$ each line exhibiting a further doublet coupling $\left[{ }^{2} J(\mathrm{FPF})\right]$ (see Table 2). The two fluorines on a $\mathrm{PF}_{2}\left(\mathrm{NMe}_{2}\right)$ group in each isomer are anisochronic and since there is chemical-shift equivalence between the fluorophosphines

[^0]on (6b) but not on (6a) the latter isomer should give rise to four pairs of lines and the former only two as found.* The ratio of (a) : (b) is ca. 2:1 and this is also evident from the ${ }^{1} \mathrm{H}$ n.m.r. spectrum [Figure $5(b)$]. On increasing the temperature the ${ }^{19} \mathrm{~F}$ n.m.r. spectrum simplifies to two ${ }^{1} J(\mathrm{PF})$ doublets at $75{ }^{\circ} \mathrm{C}$ with coincidence of inner lines, suggesting that there is rapid equilibration of the isomers. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum shows a similar coalescence of the methyl resonances on increasing the temperature [Figure $5(b)]$.

In contrast to the two previous reactions, treatment of $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ with cis- $\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ in acetone does not give the expected dimer $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}(\mathrm{OC}) \mathrm{RuCl}_{3}-\right.$ $\left.\mathrm{RuCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$ but instead a red crystalline solid, (7), precipitates from the reaction mixture, and cis$\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left(\mathrm{PPl}_{3}\right)_{2}\right]$ is recovered in virtually quantitative yield. The instability of (7) has precluded assignment of a structure. A band at $1653 \mathrm{~cm}^{-1}$ in the i.r. spectrum is typical of $v(\mathrm{CO})$ of co-ordinated acetone, while the reaction of (7) with PF_{3} to give (1) and cis$\left[\mathrm{RuCl}_{2}\left(\mathrm{PF}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ suggests that it may have a similar structure to the red dimeric acetone complex reported by Gilbert and Wilkinson. ${ }^{21}$

Mechanistic Considerations.-Since completion of this study other workers ${ }^{7,9,22}$ have proposed mechanisms for the formation of binuclear ruthenium(II) complexes

containing triple halide bridges. In our study we find that no reaction occurs between $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ and fluorophosphine ligands when air is rigorously excluded from the system. At the outset of our work the behaviour of $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ in solution had not been described in detail, but subsequently two reports ${ }^{23,24}$ established that PPh_{3} dissociation occurs to produce the dichloro-bridged binuclear complex $\left[\left\{\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right\}_{2}\right]$, thus discounting an earlier proposal ${ }^{25}$ of the existence of a mononuclear ' $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ' species. Similar dissociative behaviour has been established for [RhCl$\left.\left(\mathrm{PR}_{3}\right)_{3}\right]\left(\mathrm{R}=\mathrm{Ph}\right.$ or $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right) .{ }^{26}$

Since the extent of PPh_{3} dissociation is known to be enhanced in the presence of air the reaction of $\left[\mathrm{RuCl}_{2}-\right.$ $\left(\mathrm{PPh}_{3}\right)_{3}$] with fluorophosphines, L , could conceivably

[^1]proceed via a short-lived intermediate shown on p. 907 which then rapidly forms the first trichloro-bridged
$\left.\left.\mathrm{Cl}_{2}\right\}_{2}\right]$ rearranges to $\left[\mathrm{Rh}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Cl}_{3}\right]\left[\mathrm{BPh}_{4}\right]$ on treatment with sodium tetraphenylborate. ${ }^{27}$

Figure 5 Variable-temperature ${ }^{19} \mathrm{~F}(a)$ and ${ }^{1} \mathrm{H}(b)$ n.m.r. spectra of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)\left\{\left(\mathrm{Me}_{2} \mathrm{~N}\right) \mathrm{F}_{2} \mathrm{P}\right\}_{2} \mathrm{RuCl}_{3} \mathrm{RuCl}^{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$
product (isolated for $\mathrm{L}=\mathrm{PF}_{3}$ and CO). Further reaction with the fluorophosphine would lead to replacement of PPh_{3} on $\mathrm{Ru}^{2}, e . g$. to give (1) or (3).

An alternative synthesis of (1) via the thermal decomposition of the monomeric complex $\left[\mathrm{RuCl}_{2}(\mathrm{dmf})\left(\mathrm{PF}_{3}\right)\right.$ $\left(\mathrm{PPh}_{3}\right)$] could also involve a dichloro-bridged dimetric intermediate. The complex $\left[\mathrm{RuCl}_{2}\left(\mathrm{PEtPh}_{2}\right)_{3}\right]$ is also reported to dimerise in solution forming an unstable complex which then rearranges to $\left[\left(\mathrm{Ph}_{2} \mathrm{EtP}\right)_{3} \mathrm{RuCl}_{3} \mathrm{RuCl}-\right.$ $\left.\left(\mathrm{PEtPh}_{2}\right)_{2}\right]^{24} \quad$ Similar behaviour has also been reported for $\left[\left\{\mathrm{RuCl}_{2} \mathrm{~L}\left(\mathrm{PPh}_{3}\right)_{2}\right\}_{2}\right]$ which affords $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{LRuCl}_{3}-\right.$ $\left.\operatorname{RuCl}(\mathrm{L})\left(\mathrm{PPh}_{3}\right)\right](\mathrm{L}=\mathrm{CS}$ or CO$),{ }^{8,22}$ while $\left[\left\{\mathrm{Rh}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)-\right.\right.$

Attempts to obtain a binuclear complex containing PF_{3} which contains a double chloro-bridge by treatment of $\left[\left\{\mathrm{RuCl}_{2}\left(\mathrm{OCMe}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right\}_{2}\right]^{21}$ with 2 equivalents of PF_{3} led instead to the production of the trichlorobridged complex (1). A similar reaction occurred with $\mathrm{PF}_{2}\left(\mathrm{NMe}_{2}\right)$. The complex $\left[\mathrm{RuCl}_{2}(\mathrm{dmf})\left\{\mathrm{PF}_{2}\left(\mathrm{NMe}_{2}\right)\right\}-\right.$ $\left(\mathrm{PPh}_{3}\right)_{2}$], which dimerises to the trichloro-bridged complex faster than the trifluorophosphine analogue, only exhibits lines in the ${ }^{31} \mathrm{P}$ n.m.r. spectrum for the monomeric and trichloro-bridged dimetric complexes. ${ }^{1}$
${ }_{27}$ J. W. Kang and P. M. Maitlis, J. Organometallic Chem., 1971, 30, 127.

Support for an alternative mechanism involving a concerted reaction with phosphine elimination comes from the reaction of $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ with $\left[\mathrm{RuBr}_{2}(\mathrm{CO})\right.$ -

(dmf) $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]^{9}$ in which both halogens initially on the carbonyl complex become bridging ligands. Likewise, $\left[\mathrm{RuCl}_{2}(\mathrm{CO})(\mathrm{dmf})\left(\mathrm{PPh}_{3}\right)\right]$ and $\left[\mathrm{RuBr}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ afford $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}(\mathrm{OC}) \mathrm{RuBrCl}_{2} \mathrm{RuBr}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot{ }^{9}$ There is no evidence for a dimeric complex containing more than two PPh_{3} ligands on the same ruthenium atom.

Reactions of Trichloro-bridged Complexes.-All the trichloro-bridged complexes reported are stable in the presence of an excess of PPh_{3}, but treatment of (1) with 2 equivalents of PF_{3} gives up to 50% yields of cis$\left[\mathrm{RuCl}_{2}\left(\mathrm{PF}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and the yield can be increased in the presence of PPh_{3}. A similar reaction occurs between (2) and $\mathrm{PF}_{2}\left(\mathrm{NMe}_{2}\right)$. Trifluorophosphine reacts readily with (4) in the presence of PPh_{3} to afford high yields of the colourless crystalline monomeric complex $\left[\mathrm{RuCl}_{2}(\mathrm{CO})\left(\mathrm{PF}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (8). The high-field doublet in the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum of (8) is assigned to the resonance of two magnetically equivalent PPh_{3} groups coupled to $\mathrm{PF}_{3}\left[{ }^{2} J\left(\mathrm{PRuP}^{\prime}\right)\right]$, while the low-field PF_{3} resonance occurs as the expected triplet $\left[{ }^{2} J\left(\mathrm{PRuP}^{\prime}\right)\right]$ of quartets $\left.{ }^{1} J(\mathrm{PF})\right]$. The magnitude of ${ }^{2} J\left(\mathrm{PRuP}^{\prime}\right)$ indicates that the PPh_{3} ligands are both cis to the PF_{3}, and since a mutually trans arrangement of CO and PF_{3} is unlikely we assign the structure shown below, which is analogous to that of cis- $\left[\mathrm{RuCl}_{2}\left(\mathrm{PF}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ recently established by X-ray crystallography. ${ }^{28}$

(8)

A tetrahydrofuran (thf) solution of (2) reacts with an equimolar amount of thallium $1,1,1,5 ; 5,5$-hexafluoro-pentane-2,4-dionate to yield the salmon-pink complex (9), formulated as $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{3}\left(\mathrm{PF}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{4}\left(\mathrm{CF}_{3} \mathrm{COCHOCCF}_{3}\right)\right]$. The i.r. spectrum of (9) exhibits a strong band at 1660 cm^{-1} assigned to $v(\mathrm{C}=\mathrm{O})$ of a bidentate pentanedionate group, while strong bands at 1208 and $1150 \mathrm{~cm}^{-1}$ and
${ }_{28}$ P. B. Hitchcock, J. F. Nixon, and J. Sinclair, J. Organometallic Chem., 1975, 86, C34.

890,879 , and $845 \mathrm{~cm}^{-1}$ are assigned to $v(\mathrm{C}-\mathrm{F})$ and $v(\mathrm{P}-\mathrm{F})$ modes respectively. On the basis of the ${ }^{19} \mathrm{~F}$ n.m.r. spectrum, which exhibits a low-field doublet $[\phi(\mathrm{F}) 7.7$ p.p.m. $\left.{ }^{1} J(\mathrm{PF}) 1270 \mathrm{~Hz}\right]$ for the PF_{3} ligand and a highfield singlet $\left[\phi(\mathrm{F}) 73.8\right.$ p.p.m.] of two equivalent CF_{3} groups, (9) is tentatively assigned the following structure.

EXPERIMENTAL

General procedures were as described earlier. ${ }^{1}$
Preparation of Tri- μ-chloro-chlorobis(trifluovophosphine)tris(triphenylphosphine)diruthenium(11) (1).-(i) Reaction of $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ with trifluorophosphine. A mixture of $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right] \quad(0.510 \mathrm{~g}, 0.53 \mathrm{mmol})$, trifluorophosphine ($0.051 \mathrm{~g}, 0.58 \mathrm{mmol}$), and benzene ($10 \mathrm{~cm}^{3}$) was shaken in an ampoule and warmed from $-196{ }^{\circ} \mathrm{C}$ to room temperature, when a rapid reaction occurred involving a series of colour changes from brown to violet to red and finally to pale yellow. After 4 h at room temperature, removal of solvent afforded a red oil which was washed with hexane $\left(10 \mathrm{~cm}^{3}\right)$ and recrystallisation from dichloromethanehexane gave orange-yellow crystals of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}\left(\mathrm{~F}_{3} \mathrm{P}\right)\right.$ $\left.\mathrm{RuCl}_{3} \mathrm{RuCl}\left(\mathrm{PF}_{3}\right)\left(\mathrm{PPh}_{3}\right)\right](0.280 \mathrm{~g}, 0.21 \mathrm{mmol}, 74 \%)$, m.p. $191-192{ }^{\circ} \mathrm{C}$ [Found: C, $49.6 ; \mathrm{H}, 3.2 \% ; M$ (osmometrically) 1 346. $\mathrm{C}_{54} \mathrm{H}_{45} \mathrm{Cl}_{4} \mathrm{~F}_{6} \mathrm{P}_{5} \mathrm{Ru}_{2}$ requires $\mathrm{C}, 49.6 ; \mathrm{H}, 2.5 \%$; $M 1306]$. Infrared spectrum in Nujol mull: 3060 w , $1587 \mathrm{w}, 1572,1484 \mathrm{mw}, 1438 \mathrm{~m}, 1191 \mathrm{w}, 1160 \mathrm{w}, 1099 \mathrm{w}$ (sh), $1090 \mathrm{~m}, 1076 \mathrm{w}, 1030 \mathrm{w}, 1002 \mathrm{w}, 892 \mathrm{w}$ (sh), 880 vs , 870 s (sh), 860 w (sh), 759 w (sh), $750 \mathrm{~m}, 743 \mathrm{w}, 712 \mathrm{w}$ (sh), $703 \mathrm{~m}, 697 \mathrm{~s}, 690 \mathrm{w}(\mathrm{sh}), 621 \mathrm{w}, 554 \mathrm{vw}$ (sh), $550 \mathrm{~ms}, 529 \mathrm{vs}$, $509 \mathrm{w}, 476 \mathrm{w}$, and $459 \mathrm{w} \mathrm{cm}^{-1}$. Recrystallisation from thfhexane gave yellow crystals of (1) as the $1: 2$ solvate (Found: C, $51.5 ; \mathrm{H}, 4.4 . \quad \mathrm{C}_{62} \mathrm{H}_{61} \mathrm{Cl}_{4} \mathrm{~F}_{6} \mathrm{O}_{2} \mathrm{P}_{5} \mathrm{Ru}_{2}$ requires C, 51.3; H, 4.2%).
(ii) Reaction of $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ with cis- $\left[\mathrm{RuCl}_{2}\left(\mathrm{PF}_{3}\right)_{\mathbf{2}^{-}}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]$. A solution of $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right] \quad(0.195 \mathrm{~g}, 0.20$ $\mathrm{mmol})$ and $c i s-\left[\mathrm{RuCl}_{2}\left(\mathrm{PF}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](0.177 \mathrm{~g}, 0.20 \mathrm{mmol})$ in acetone $\left(100 \mathrm{~cm}^{3}\right)$ heated for 6 h gave an oil which was washed with hexane $\left(10 \mathrm{~cm}^{3}\right)$ and recrystallisation from dichloromethane-hexane gave yellow crystals of (1) (0.264 g, $0.18 \mathrm{mmol}, 90 \%$), m.p. $184^{\circ} \mathrm{C}$ (Found: C, 49.8 ; H, 3.5%).
(iii) Reaction of $\left[\left\{\mathrm{RuCl}_{2}\left(\mathrm{OCMe}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right\}_{2}\right]$ with PF_{3}. Similarly, $\left[\left\{\mathrm{RuCl}_{2}(\mathrm{OCMe} 2)\left(\mathrm{PPh}_{3}\right)_{2}\right\}_{2}\right](1.113 \mathrm{~g}, 0.74 \mathrm{mmol})$, $\mathrm{PF}_{3}(0.149 \mathrm{~g}, 1.69 \mathrm{mmol})$, and benzene $\left(20 \mathrm{~cm}^{3}\right)$ heated at $60^{\circ} \mathrm{C}$ for 30 min gave a red oil which was purified as above to give (l) ($0.423 \mathrm{~g}, 0.33 \mathrm{~mol}, 45 \%$) (Found: $\mathrm{C}, 50.5, \mathrm{H}$, 4.7%) whose i.r. and ${ }^{19} \mathrm{~F}$ n.m.r..spectra were identical with those of the previous sample. A small amount (0103 g, $0.11 \mathrm{mmol}, 8 \%)$ of $\left[\mathrm{RuCl}_{2}\left(\mathrm{PF}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ was also obtained.
(iv) Thermal decomposition of $\left[\mathrm{RuCl}_{2}(\mathrm{dmf})\left(\mathrm{PF}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$. A solution of $\left[\mathrm{RuCl}_{2}(\mathrm{dmf})\left(\mathrm{PF}_{3}\right) \cdot\left(\mathrm{PPh}_{9}\right)\right](0.182 \mathrm{~g}, 0.21 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ heated for 3 h gave (1) $(0.079 \mathrm{~g}, 0.06$ mmol, 57%) (Found: C, $49.1 ; \mathrm{H}, 3.5 ; \mathrm{N}, 0.0 \%$) and a smaller amount ($\mathbf{1 5 \%}$) of starting material.

Preparation of. Tri- μ-chlovo-chlorotrifluorophosphinetetrakis(triphenylphosphine)diruthenium (11) (2).-Similarly to the preparation of (1), $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right](1.164 \mathrm{~g}, 1.22$ $\mathrm{mmol})$ and $\mathrm{PF}_{3}(0.585 \mathrm{~g}, 0.66 \mathrm{mmol})$ gave deep red
crystals of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}\left(\mathrm{~F}_{3} \mathrm{P}\right) \mathrm{RuCl}_{3} \mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ isolated as the $2: 1$ dichloromethane solvate ($0.834 \mathrm{~g}, 0.55 \mathrm{mmol}, 91 \%$), m.p. $166^{\circ} \mathrm{C}$ (decomp.) (Found: C, 56.9; H, 4.2. $\mathrm{C}_{72.5} \mathrm{H}_{61^{-}}$ $\mathrm{Cl}_{5} \mathrm{~F}_{3} \mathrm{P}_{5} \mathrm{Ru}_{2}$ requires $\mathrm{C}, 57.1 ; \mathrm{H}, 4.0 \%$). Infrared spectrum in Nujol: $3056 \mathrm{w}, 1587 \mathrm{w}, 1572 \mathrm{w}, 1483 \mathrm{w}, 1433 \mathrm{~m}, \mathrm{l} 318 \mathrm{vw}$, $1269 \mathrm{w}, 1195$ (sh), $1191 \mathrm{mw}, 1159 \mathrm{w}, 1088 \mathrm{~s}, 1080 \mathrm{w}$ (sh), $1030 \mathrm{w}, 1001 \mathrm{mw}, 932 \mathrm{w}, \mathrm{br}, 870 \mathrm{vw}, 863 \mathrm{vs}, 852 \mathrm{w}$ (sh), 848 w (sh), $765 \mathrm{w}, 753 \mathrm{w}$ (sh), $750 \mathrm{w}, 741 \mathrm{~s}, 735 \mathrm{w}$ (sh), 715 w , 708 w (sh), $698 \mathrm{vs}, \mathrm{br}, 684 \mathrm{w}, 62 \mathrm{l} \mathrm{w}, 550 \mathrm{w}, 544 \mathrm{vs}, 527 \mathrm{vs}, \mathrm{br}$, $550 \mathrm{~ms}, 466 \mathrm{w}, 440 \mathrm{w}, 524 \mathrm{w}(\mathrm{sh}), 420 \mathrm{mw}$, and $400 \mathrm{w} \mathrm{cm}^{-1}$. A small amount of (1) was also obtained from the mother liquor.

Preparation of Tri- μ-chloro-chlorobis[(dimethylamino)difluorophosphine]tris(triphenylphosphine)diruthenium(11) (3). -(i) From $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$. The complex $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ $(0.982 \mathrm{~g}, 1.03 \mathrm{mmol})$ and $\mathrm{PF}_{2}\left(\mathrm{NMe}_{2}\right)(0.116 \mathrm{~g}, 1.03 \mathrm{mmol})$ in benzene $\left(25 \mathrm{~cm}^{3}\right.$) gave a red oil after 15 min at room temperature. After washing with hexane recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane gave orange-yellow crystals of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}-\right.$ $\left\{\left(\mathrm{Me}_{2} \mathrm{~N}\right) \mathrm{F}_{2} \mathrm{P}\right\} \mathrm{RuCl}_{3} \mathrm{RuCl}_{\left.\left\{\mathrm{PF}_{2}\left(\mathrm{NMe}_{2}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \text { isolated as the }}$ $2: 1$ dichloromethane solvate $(0.482 \mathrm{~g}, 0.36 \mathrm{mmol}, 71 \%)$, m.p. $176{ }^{\circ} \mathrm{C}$ (Found: C, $50.0 ; \mathrm{H}, 4.4 ; \mathrm{N}, 2.0 . \mathrm{C}_{58.5} \mathrm{H}_{58}{ }^{-}$ $\mathrm{Cl}_{5} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{P}_{5} \mathrm{Ru}_{2}$ requires $\mathrm{C}, 50.2 ; \mathrm{H}, 4.15 ; \mathrm{N}, 2.0 \%$). Infrared spectrum in Nujol: $3060 \mathrm{w}, 3045 \mathrm{w}, 1584 \mathrm{w}, 157 \mathrm{lw}$, $1482 \mathrm{w}, \quad 1434 \mathrm{mw}, \quad 1296 \mathrm{mw}, \mathrm{br}, \quad 1263 \mathrm{w}, \quad 1193 \mathrm{w}$ (sh), $1188 \mathrm{mw}, 1162 \mathrm{w}, 1158 \mathrm{w}(\mathrm{sh}), 1090 \mathrm{~m}, 1071 \mathrm{w}, 1029 \mathrm{w}$, 1000 w (sh), $990 \mathrm{vs}, 930 \mathrm{w}, 863 \mathrm{vw}, 852 \mathrm{w}, 848 \mathrm{w}, 827 \mathrm{w}$ (sh), $815 \mathrm{~s}, 789 \mathrm{~m}, 777 \mathrm{~s}, 759 \mathrm{vw}, 746 \mathrm{~s}, 739 \mathrm{~m}, 733 \mathrm{vw}, 720 \mathrm{vs}, 703 \mathrm{w}$, (sh), $696 \mathrm{vs}, 648 \mathrm{w}(\mathrm{sh}), 620 \mathrm{w}, 542 \mathrm{~s}, 527 \mathrm{vs}, 523 \mathrm{vs}, 516 \mathrm{w}$ (sh), 502 m (sh), $462 \mathrm{~m}, 458 \mathrm{w}$ (sh), 452 vw (sh), $430 \mathrm{w}, 417 \mathrm{w}, 370 \mathrm{w}$, $340 \mathrm{w}, 335 \mathrm{w}, 325 \mathrm{w}$, and $304 \mathrm{mw} \mathrm{cm}^{-1}$. A small amount (10%) of $\left[\mathrm{RuCl}_{2}\left\{\mathrm{PF}_{2}\left(\mathrm{NMe}_{2}\right)\right\}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ was also obtained.
(ii) From $\left[\left\{\mathrm{RuCl}_{2}\left(\mathrm{OCMe}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right\}_{2}\right]$. A mixture of $\left[\left\{\mathrm{RuCl}_{3}\left(\mathrm{OCMe}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right\}_{2}\right] \quad(0.493 \mathrm{~g}, 0.33 \mathrm{mmol})$ and $\mathrm{PF}_{2^{-}}$ $\left(\mathrm{NMe}_{2}\right)(0.075,0.66 \mathrm{mmol})$ in benzene $\left(20 \mathrm{~cm}^{3}\right)$ was heated in a sealed tube at $60^{\circ} \mathrm{C}$ for 1 h to form orange crystals of the $2: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvate of (3) $(0.371 \mathrm{~g}, 83 \%)$, m.p. $177{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 50.5 ; \mathrm{H}, 4.5 ; \mathrm{N}, 2.1 \%$) whose i.r. spectrum was as given above.
(iii) From $\left[\mathrm{RuCl}_{3}(\mathrm{dmf})\left\{\mathrm{PF}_{2}\left(\mathrm{NMe}_{2}\right)\right\}\left(\mathrm{PPh}_{3}\right)\right]$. A freshly prepared sample of $\left[\mathrm{RuCl}_{2}(\mathrm{dmf})\left\{\mathrm{PF}_{2}\left(\mathrm{NMe}_{2}\right)\right\}\left(\mathrm{PPl}_{3}\right)\right]$ (0.283 $\mathrm{g}, 0.32 \mathrm{mmol}$) was recrystallised from hot $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the 2:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvate of (3) $(0.189 \mathrm{~g}, 87 \%)$, m.p. $177{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 50.6 ; \mathrm{H}, 4.6 ; \mathrm{N}, 2.0 \%$).

Preparation of Dicarbonyltri- μ-chloro-chlorotris(triphenylphosphine)diruthenium(II) (4).-A mixture of $\left[\mathrm{RuH}_{2}(\mathrm{CO})\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{3}\right](1.170 \mathrm{~g}, 1.27 \mathrm{mmol})$ and HCl gas $(0.110 \mathrm{~g}, 3.0$ mmol) in benzene $\left(20 \mathrm{~cm}^{3}\right)$ was warmed slowly from $-196^{\circ} \mathrm{C}$ to room temperature to afford after recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane yellow crystals of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}(\mathrm{OC})\right.$ $\left.\mathrm{RuCl}_{3} \mathrm{RuCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$ as the $2: 1$ dichloromethane solvate ($0.712 \mathrm{~g}, 0.60 \mathrm{mmol}, 94 \%$), m.p. $214-216{ }^{\circ} \mathrm{C}$ (Found: C , 58.9 ; H, 4.4. $\mathrm{C}_{56.5} \mathrm{H}_{47} \mathrm{Cl}_{5} \mathrm{O}_{2} \mathrm{P}_{5} \mathrm{Ru}_{2}$ requires $\mathrm{C}, 58.85$; H , 4.0%). Infrared spectrum in Nujol: $3060 \mathrm{w}, 3050 \mathrm{w}$, $1989 \mathrm{w}, 1977 \mathrm{vs}, 1950 \mathrm{~m}, 1586 \mathrm{w}, 1570 \mathrm{w}, 1484 \mathrm{w}, 1436 \mathrm{~m}$, $1264 \mathrm{w}, 1196 \mathrm{w}, 1191 \mathrm{w}, 1162 \mathrm{w}, 1100 \mathrm{w}$ (sh), 1092 m , $1083 \mathrm{w}, 1031 \mathrm{w}, 1001 \mathrm{w}, 849 \mathrm{vw}, 756 \mathrm{w}(\mathrm{sh}), 749 \mathrm{w}, 741 \mathrm{~s}$, 710 w (sh), $698 \mathrm{vs}, 620 \mathrm{v}, 594 \mathrm{vs}$ (sh), $589 \mathrm{~m}, 581 \mathrm{~m}, 543 \mathrm{~m}$, $529 \mathrm{vs}, 523 \mathrm{~s}, 509 \mathrm{w}$ (sh), 503 w (sh), $500 \mathrm{w}, 465 \mathrm{w}, 458 \mathrm{w}$, $445 \mathrm{w}, 437 \mathrm{w}$, and $417 \mathrm{w} ; v(\mathrm{CO})$ at 1979 vs and $1949 \mathrm{vs} \mathrm{cm}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Preparation of Carbonyltri- μ-chloro-chloro(trifluorophosphine)tris(triphenylphosphine)diruthenium(11) (5).-A mixture of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}(\mathrm{OC}) \mathrm{RuCl}_{3} \mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}\right] \quad(0.624$ g, 0.42 $\mathrm{mmol})$ and $\mathrm{PF}_{3}(0.039 \mathrm{~g}, 0.43 \mathrm{mmol})$ in benzene $\left(20 \mathrm{~cm}^{3}\right)$
was heated to $100^{\circ} \mathrm{C}$ for 3 h to give yellow needles of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}(\mathrm{OC}) \mathrm{RuCl}_{3} \mathrm{RuCl}\left(\mathrm{PF}_{3}\right)\left(\mathrm{PPh}_{3}\right)\right](0.494 \mathrm{~g}, 0.40 \mathrm{mmol}$, 94%), m.p. $184{ }^{\circ} \mathrm{C}$ (Found: C, 53.2 ; H, 4.0. $\mathrm{C}_{55} \mathrm{H}_{45} \mathrm{Cl}_{5} \mathrm{~F}_{3}$ $\mathrm{OP}_{4} \mathrm{Ru}_{2}$ requires $\mathrm{C}, 53.0 ; \mathrm{H}, 3.6 \%$). Infrared spectrum in Nujol: $3059 \mathrm{w}, 1980 \mathrm{vs}, 1586 \mathrm{vw}, 1573 \mathrm{w}, 1482 \mathrm{w}$, $1435 \mathrm{mw}, 1315 \mathrm{vw}, 1270 \mathrm{vw}, 1264 \mathrm{w}, 1190 \mathrm{w}, 1162 \mathrm{w}$, $1092 \mathrm{~m}, 1082 \mathrm{w}(\mathrm{sh}), 1030 \mathrm{~m}, 1001 \mathrm{w}, 921 \mathrm{w}, 879 \mathrm{vs}, 862 \mathrm{~s}$, $856 \mathrm{~s}, 852 \mathrm{~s}, 755 \mathrm{w}$ (sh), $748 \mathrm{~s}, 742 \mathrm{~s}, 719 \mathrm{w}$ (sh), 705 w (sh), $698 \mathrm{vs}, 689 \mathrm{w}, 620 \mathrm{w}, 591 \mathrm{mw}, 582 \mathrm{mw}, 553 \mathrm{~m}, 541 \mathrm{~m}, 530 \mathrm{vs}$, $520 \mathrm{~s}(\mathrm{sh}), 506 \mathrm{w}(\mathrm{sh}), 492 \mathrm{w}, 463 \mathrm{w}, 443 \mathrm{w}, 422 \mathrm{w}$, and 400 w ; $v(\mathrm{CO})$ at $1980 \mathrm{vs}, \mathrm{br} \mathrm{cm}{ }^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A small amount (7\%) of (8) was also obtained.

Preparation of cis-Carbonyldichloro(trifluorophosphine)bis(tviphenylphosphine)ruthenium(II) (8).-A mixture of (4) $(0.137 \mathrm{~g}, 0.12 \mathrm{mmol}), \mathrm{PF}_{3}(0.030 \mathrm{~g}, 0.34 \mathrm{mmol})$, and dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ shaken for 12 h at room temperature gave colourless crystals of (8) isolated as the $\mathbf{2}: \mathbf{1}$ dichloromethane solvate ($0.090 \mathrm{~g}, 0.11 \mathrm{mmol}, 46 \%$), m.p. $225{ }^{\circ} \mathrm{C}$ (darkens at $218{ }^{\circ} \mathrm{C}$) (Found: $\mathrm{C}, 53.2$; $\mathrm{H}, 3.8$. $\mathrm{C}_{37.5} \mathrm{H}_{31^{-}}$ $\mathrm{Cl}_{3} \mathrm{~F}_{3} \mathrm{OP}_{3} \mathrm{Ru}$ requires $\mathrm{C}, 52.7 ; \mathrm{H}, 3.6 \%$). Infrared spectrum in Nujol: $3060 \mathrm{w}, 2022 \mathrm{vs}, 2016 \mathrm{w}, 1968 \mathrm{vw}, 1589 \mathrm{w}$, $1575 \mathrm{w}, 1486 \mathrm{w}, 1439 \mathrm{~m}, 1320 \mathrm{vw}, 1268 \mathrm{vw}, 1188 \mathrm{w}, 1163 \mathrm{w}$, $1112,1095 \mathrm{~m}, 1089 \mathrm{w}(\mathrm{sh}), 1075 \mathrm{vw}, 1031 \mathrm{w}, 1002 \mathrm{w}$, $902 \mathrm{vw}, 887 \mathrm{vs}, 877 \mathrm{vs}, 870 \mathrm{vs}, 857 \mathrm{w}$ (sh), $759 \mathrm{w}, 751 \mathrm{~m}, 740 \mathrm{~m}$, $710 \mathrm{~s}, 703 \mathrm{~s}, 690 \mathrm{w}(\mathrm{sh}), 621 \mathrm{w}, 569 \mathrm{~s}, 549 \mathrm{w}, 524 \mathrm{vs}, 509 \mathrm{~s}, 500 \mathrm{w}$, $460 \mathrm{w}, 439 \mathrm{w}, 435 \mathrm{w}, 424 \mathrm{w}, 400 \mathrm{vw}, 394 \mathrm{w}, 340 \mathrm{w}, 296 \mathrm{w}$, and $260 \mathrm{w}, \mathrm{br} \mathrm{cm}{ }^{-1}$. The yield was improved by adding PPh_{3} to the reaction mixture.

Preparation of Tri- μ-chloro-chlorobis $[($ dimethylamino $) d i-$ fluorophosphine]tris(triphenylphosphine)diruthenium(II) (6). -A solution of $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right](0.315 \mathrm{~g}, 0.33 \mathrm{mmol})$ and $\left[\mathrm{RuCl}_{2}\left\{\mathrm{PF}_{2}\left(\mathrm{NMe}_{2}\right)\right\}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \quad(0.303 \mathrm{~g}, 0.33 \mathrm{mmol})$ in acetone $\left(120 \mathrm{~cm}^{3}\right)$ was heated under reflux for 5.5 h . Removal of solvent left an oil which was washed with hexane $\left(2 \times 10 \mathrm{~cm}^{3}\right)$ and recrystallisation from dichloro-methane-hexane gave deep red crystals of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)\left\{\left(\mathrm{Me}_{2} \mathrm{~N}\right)\right.\right.$ $\left.\left.\mathrm{F}_{2} \mathrm{P}\right\}_{2} \mathrm{RuCl}_{3} \mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}\right](0.366 \mathrm{~g}, 0.27 \mathrm{mmol}, 82 \%)$, m.p. $161{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 51.6 ; \mathrm{H}, 4.2$; $\mathrm{N}, 2.2$. $\mathrm{C}_{58} \mathrm{H}_{57} \mathrm{Cl}_{4} \mathrm{~F}_{4}-$ $\mathrm{N}_{2} \mathrm{P}_{5} \mathrm{Ru}_{2}$ requires $\mathrm{C}, 51.3 ; \mathrm{H}, 4.2 ; \mathrm{N}, 2.1 \%$). Infrared spectrum in Nujol: $3058 \mathrm{w}, 1590 \mathrm{w}, 1573 \mathrm{w}, 1487 \mathrm{w}$, $1437 \mathrm{w}, 1302 \mathrm{~m}, 1193 \mathrm{w}(\mathrm{sh}), 1184 \mathrm{~m}, 1168 \mathrm{w}(\mathrm{sh}), 1091 \mathrm{~s}$, $1078 \mathrm{w}, 1032 \mathrm{w}, 992 \mathrm{vs}, 934 \mathrm{vw}, 862 \mathrm{~s}, 857 \mathrm{~s}, 848 \mathrm{~s}, 840 \mathrm{~m}$, $830 \mathrm{~s}, 808 \mathrm{w}, 789 \mathrm{w}, 757 \mathrm{~s}, 752 \mathrm{~s}, 733 \mathrm{w}, 719 \mathrm{~s}, 700 \mathrm{vs}, 689 \mathrm{w}$ (sh), $624 \mathrm{w}, 548 \mathrm{vs}, 529 \mathrm{vs}, \mathrm{br}, 507 \mathrm{w}, 465 \mathrm{w}, 442 \mathrm{w}$ (sh), and 432 mw cm^{-1}.

Reaction of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}\left(\mathrm{~F}_{3} \mathrm{P}\right) \mathrm{RuCl}_{3} \mathrm{RuCl}\left(\mathrm{PF}_{3}\right)\left(\mathrm{PPh}_{3}\right)\right]$ with Trifluorophosphine.-A mixture of (l) $(0.100 \mathrm{~g}, 0.08 \mathrm{mmol})$, dichloromethane $\left(15 \mathrm{~cm}^{3}\right)$, and $\mathrm{PF}_{3}(0.532 \mathrm{~g}, 6.65 \mathrm{mmol})$ shaken at room temperature for 18 h gave an oil which was recrystallised from dichloromethane-hexane to give colourless crystals of cis-dichlorobis(trifluorophosphine)bis(triphenylphosphine)ruthenium(II) ($0.060 \mathrm{~g}, 0.07 \mathrm{mmol}, 43 \%$). The yield was increased by the addition of PPh_{3} to the reaction mixture.

Reaction of $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ with cis- $\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$. -A solution of $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right](0.391 \mathrm{~g}, 0.41 \mathrm{mmol})$ and cis- $\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](0.307 \mathrm{~g}, 041 \mathrm{mmol})$ in acetone $\left(100 \mathrm{~cm}^{3}\right)$ heated under reflux for 4.5 h afforded a red crystalline precipitate of the unidentified complex (7) (0.083 g), m.p. $135-136{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 60.8; $\mathrm{H}, 5.0 \%$). Infrared spectrum in Nujol: $3060 \mathrm{w}, 1715 \mathrm{~ms}$, $1653 \mathrm{~m}, 1589 \mathrm{w}, 1575 \mathrm{w}, 1488 \mathrm{w}, 1440 \mathrm{w}, 1370 \mathrm{w}, 1320 \mathrm{w}$, $1247 \mathrm{w}, 1229 \mathrm{w}, 1199 \mathrm{w}, 1161 \mathrm{w}, 1123 \mathrm{w}, 1098 \mathrm{~m}, 1087 \mathrm{w}$ (sh), $1032 \mathrm{w}, 1005 \mathrm{w}, 978 \mathrm{w}, 931 \mathrm{vw}, 855 \mathrm{w}, 764 \mathrm{mw}, 756 \mathrm{~s}$, $750 \mathrm{vs}, 728 \mathrm{w}, 715 \mathrm{w}$ (sh), $7 \mathrm{ll} \mathrm{vs}, 700 \mathrm{vs}, 689 \mathrm{w}, 621 \mathrm{w}, 588 \mathrm{w}$,
$550 \mathrm{~s}, 544 \mathrm{vs}, 532 \mathrm{vs}, 521 \mathrm{w}$ (sh), $511 \mathrm{w}, 505 \mathrm{~m}, 475 \mathrm{w}, 469 \mathrm{w}$, $445 \mathrm{w}, 430 \mathrm{mw}, 327 \mathrm{w}, 295 \mathrm{w}, 272 \mathrm{w}$, and $252 \mathrm{w} \mathrm{cm} \mathrm{cm}^{-1}$. Phosphorus n.m.r. resonances at $85.0,89.1,92.5$, and 100.6 p.p.m. relative to $\mathrm{P}(\mathrm{OMe})_{3} ; \int\left(\mathrm{PRuP}^{\prime}\right) \quad 36.6 \mathrm{~Hz}$. An almost quantitative recovery of $\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ was obtained from the acetone solution.

Preparation of Di- μ-chloro-chloro(1,1,1,5,5,5-hexafluoro-pentane-2,4-dionato)(trifluorophosphine)tetrakis(triphenylphosphine)diruthenium(II) (9).-A solution of thallium(1) $1,1,1,5,5,5$-hexafluoropentane-2,4-dionate $(0.177 \mathrm{~g}, 0.43$ mmol) in thf $\left(10 \mathrm{~cm}^{3}\right)$ was added to a solution of (2) $(0.632 \mathrm{~g}, 0.43 \mathrm{mmol})$ in thf $\left(25 \mathrm{~cm}^{3}\right)$ and the mixture stirred for 1 h at room temperature to give a red oil which was washed with hexane. Recrystallisation from dichloro-methane-hexane gave salmon-pink crystals of $\left[\mathrm{Ku}_{2} \mathrm{Cl}_{3}-\right.$
$\left.\left(\mathrm{CF}_{3} \mathrm{COCHOCCF}_{3}\right)\left(\mathrm{PF}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{4}\right](0.395 \mathrm{~g}, 0.24 \mathrm{mmol}, 56 \%)$, m.p. $184{ }^{\circ} \mathrm{C}$ (decomp.) (Found: $\mathrm{C}, 56.8 ; \mathrm{H}, 4.1 . \mathrm{C}_{77} \mathrm{H}_{61^{-}}{ }^{-}$ $\mathrm{Cl}_{3} \mathrm{~F}_{9} \mathrm{O}_{2} \mathrm{P}_{5} \mathrm{Ru}_{2}$ requires C , $56.5 ; \mathrm{H}, 3.75 \%$). Infrared spectrum in Nujol: $3050 \mathrm{w}, 1660 \mathrm{vs}, 1651 \mathrm{w}$ (sh), 1488 w , $1440 \mathrm{~m}, 1208 \mathrm{~s}, 1195 \mathrm{w}(\mathrm{sh}), 1168 \mathrm{vw}, 1165 \mathrm{w}, 1150 \mathrm{mw}$, $1093 \mathrm{~m}, 1080 \mathrm{w}, 1031 \mathrm{w}, 1004 \mathrm{w}, ~ 980 \mathrm{vs}, 879 \mathrm{~s}, 861 \mathrm{w}$, 850 w (sh), $845 \mathrm{~m}, 839 \mathrm{w}, 832 \mathrm{w}, 775 \mathrm{vw}, 760 \mathrm{w}$ (sh), 735 w (sh), $751 \mathrm{~m}, 745 \mathrm{~m}, 731 \mathrm{mw}, 725 \mathrm{w}, 710 \mathrm{~s}, 700 \mathrm{vs}, 689 \mathrm{w}$ (sh), 621 w , $554 \mathrm{w}, 545 \mathrm{~s}, 533 \mathrm{vs}, 519 \mathrm{~s}, 512 \mathrm{w}, 505 \mathrm{w}, 464 \mathrm{w}, 453 \mathrm{w}$, $429 \mathrm{w}, \mathrm{br}, 405 \mathrm{vw}, 333 \mathrm{w}, 329 \mathrm{w}$, and $323 \mathrm{~cm}^{-1}$.

We thank the S.R.C. for support (to R. A. H.), and Johnson, Matthey for a loan of ruthenium salts.
[6/1804 Received, 27th September, 1976]

[^0]: * We thank a referee for pointing this out.
 ${ }^{18}$ M. I. Bruce, G. Shaw, and F. G. A. Stone, Chem. Comm., 1971, 1288; J.C.S. Dalton, 1972, 1082, 1781.
 ${ }^{19}$ J. P. Visser, W. W. Jager, and C. Masters, J. Roy. Nethevlands Chem. Soc., 1975, 94, 70.
 ${ }^{20}$ J. R. Blickersderfer and H. D. Kaesz, J. Amer. Chem. Soc., 1975, 97, 2681.
 ${ }^{21}$ J. O. Gilbert and G. Wilkinson, J. Chem. Soc. (A), 1969, 1749.

[^1]: ${ }^{22}$ T. A. Stephenson, E. S. Switkes, and P. W. Armit, J.C.S. Dalton, 1974, 1134.
 ${ }^{23}$ P. R. Hoffman and K. G. Caulton, J. Amer. Chem. Soc., 1975, $9^{77}, 4221$.
 ${ }^{24}$ P. W. Armit, A. S. F. Boyd, and T. A. Stephenson, J.C.S. Dalton, 1975, 1663.
 ${ }_{25}$ B. R. James and L. D. Markham, Inorg. Chem., 1974, 13, 97.
 ${ }^{28}$ C. A. Tolman, P. Z. Meakin, P. L. Lindner, and J. P. Jesson, J. Amer. Chem. Soc., 1974, 96, 2762.

